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INTRODUCTION

Modern railway vehicles are created with an 
increasing emphasis on energy efficiency, both 
due to requirements from the operators regarding 
the operating costs as well as regulatory require-
ments caused by environmental issues. The EU 
Directive on Energy Efficiency (EFD) forces the 
EU Member States to provide low-energy means 
of transport [1]. One way to ensure such a goal is 
to support efficient rail transport, both with tradi-
tional electric or hydrogen power supply.

A wide range of energy-saving technolo-
gies are used to improve energy consumption, 
but control software plays a key role in many of 
them. One of the important parts of quality assur-
ance and risk management, in this case, is soft-
ware testing and the quality of the requirements. 
Due to the increasing complexity, the number of 
functions (and requirements) that require veri-
fication in the testing process can be as high as 
several thousand. Since testing can be one of the 
most time-consuming parts of the development 

process (taking 40–70% of the total effort [2]), 
the process must be as efficient as possible. An 
important part of this effort is the creation of test 
cases that require highly skilled engineers who 
are familiar with the testing process, test envi-
ronment, and tested domain to be able to analyse 
and understand the requirements for the system 
under test. [3]

Most of the software requirements (79 %) 
are written in the common natural language, such 
as English, with only 21% using some kind of 
formalism [4]. Despite many advantages, writ-
ing requirements in a common language gener-
ates many challenges. The requirement should be 
precise, unambiguous and complete [5]. Those 
characteristics are not always ensured when writ-
ing in natural languages. Due to this, preparing 
test cases to verify if the tested software has been 
properly developed according to requirements, 
requires high skills, deep analysis and discussions 
between system engineers, software engineers 
and test engineers. 
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The basic condition for a requirement to be 
precise is the exact definition of the terms used in 
it. This applies in particular to domains in which 
specific, specialized terms are used. The railway 
industry is one example of such an environment. 
To ensure that terms are unambiguous in many 
modern application lifecycle management (ALM) 
tools, it is possible to combine text in require-
ments with other requirements or descriptions. 

In this paper, we propose an automatic pro-
cess to identify the keywords(specific terms) in 
software requirements written in natural language 
to verify if the term is followed by the link to an-
other requirement with a precise definition of the 
element.

MATERIALS AND METHODS

One of the aims of this study was to verify if 
the industrial, open-source solutions for process-
ing natural language can be used to identify spe-
cific terms in software requirements. We decided 
to use spaCy [6] – a free and open-source library 
for advanced Natural Language Processing (NLP) 
in Python. To identify the specific terms (train 
elements) in the requirements we used Named-
entity recognition – a process that assigns labels 
to contiguous spans of tokens using a statistical 
entity recognition system. A named entity is a 
“real-world object” that’s assigned a name – in 
our case – a train element. SpaCy can recognize 
various types of named entities in a document, by 
asking the model for a prediction. 

The library has several build-in models to 
predict the most common named entities like lo-
cations, organizations or people, but to identify 
different kinds of entities we had to teach our 
model. We’ve created a set of more than 300 000 
paragraphs extracted from project documents. 
The whole data set was created completely au-
tomatically, without any manual intervention, 
based on Microsoft Word files from the project 
documentation. The documents were taken from 
several projects closely related to the analysed 
domain. Each paragraph, together with the origin 
meta-data, was treated as a separate document. In 
total, this gives more than 5 million words. 

The set was extended with additional texts 
from the English Wikipedia. 9219 articles were 
extracted from Wikipedia, by traversing the cat-
egory “Rail Transport” [7]. We’ve selected ar-
ticles about rail transport in general (e.g. “Rail 

transport”, “Glossary of rail transport terms”, 
“Rolling stock”) or about railway vehicles. The 
articles about the rail infrastructure, rail-related 
companies or peoples were skipped, as the cor-
pora used in those articles weren’t useful for ana-
lysing the requirements. 

Using both sources, we created a data-set 
containing over 11 million words related to rail-
way technology, using the vocabulary used in the 
analysed requirements.

The data was pre-processed to create “senses” 
[8] and based on such data we trained the vec-
tor representation of senses that occur more than 
20 times in our corpora. We used fasttext [9] due 
to its approach, based on the skip-gram model, 
where each word is represented as a bag of char-
acter n-grams. Such an approach should perform 
better on the corpus with many rare words. As the 
training data-set was relatively small, we decided 
to use 100-dimensional vectors. The vector repre-
sentation was used to create a list of phrases de-
scribing train elements which were a basis for our 
learning process. The list was created by feeding 
10 different train elements as a seed and evalu-
ating the most similar phrases. Using this tech-
nique, with little effort, we managed to create a 
list of over 300 train elements. 

The annotations for model training were 
done using Explosion Prodigy tool [10]. In this 
process, each term was marked (beginning, end) 
and labelled. Using the tool and the vector-based 
list described above, we annotated 250 software 
requirements, each with 0 to 12 different enti-
ties. In total, we marked 980 different terms. The 
use of an items list for pre-selection significantly 
speed up the process and allowed the annotators 
to focus on the context of the requirement and on 
capturing any missing objects. The annotated data 
were used for model training using spaCy [6]. 
spaCy uses its own tokenizer to create a tokenized 
“Doc” out of the raw text and a four-step process 
[11], shown in Figure 1, to identify entities – non-
overlapping, labelled spans of tokens. 

The process starts with embedding words 
into word vectors using Bloom embeddings 
[12]. Next, the word vectors are converted into 
a sequence based on their order in the document. 
Such sequence is an input to the 4-layer residual 
convolutional neural network (CNN) generating 
a sequence matrix, where the word meaning is 
combined with the meaning of its neighbours. The 
next step in the process (attend) is to reduce the 
matrix into a single vector and use a feed-forward 
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neural network to predict the action related to the 
word. The possible actions are: beginning of the 
named entity, inside the named entity, last word 
of the named entity, outside of the named entity, 
single word named entity. 

As a basis for training, we used a large spaCy 
model (en_core_web_lg) with embedded vec-
tors (685k unique vectors with 300 dimensions) 
trained on several, publicly available datasets. 
As the fi nal step of our analysis, we have created 
a list of obvious terms that do not require refer-
ences to their defi nitions. Then we counted the 
remaining expressions recognized by the model 
and compared their number to the number of ref-
erences in the requirement. 

RESULTS

Vector representation

We evaluated the vector representation us-
ing an informal qualitative review [13]. As we 
trained the model to calculate vectors not only for 
words but also for senses we were able to limit 
our review to specifi c parts of speech (nouns, 
proper nouns) and named entities. We focus on 

the terms that are specifi c to railway technology. 
Table 1 shows a few examples of the most similar 
terms using the trained vector representation and 
default, generic spaCy model. As can be seen in 
Table 1, the vector representation of terms closely 
related to the railway domain (e.g. “pantograph”) 
indicates railway terms also using the general 
model. The model learned by us, however, deals 
much better with terms that also have a general 
meaning (e.g. “eff ort”). 

Using “senses” allowed us to fi nd a vector 
representation of the items that were already rec-
ognized by the pre-processing step as named en-
tities. This approach was very valuable as most 
of the expressions for elements of a train consist 
of many words (e.g. brake pipe, pneumatic brake, 
vehicle control unit). 

The evaluation also shows, that with the mod-
el trained on our data it’s diffi  cult to distinguish 
between common abbreviations such as UDP, 
FTP or UTF8 and the acronyms used as names 
for the train elements such as DCU (Door Control 
Unit) or ETCS (European Train Control System). 
As a fi nal evaluation, we compared the output 
from the trained model to the output of the spaCy 
en_core_web_lg model. We found that we pre-
ferred the trained model output in 72% of cases.

Figu  re 1. spaCy named entity recognition process
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Named entity recognition

To evaluate whether we generated a training 
set suffi  cient to teach the model we’ve started a 
learning process for diff erent sizes of batches. In 
each experiment, 20% of the data was used as an 
evaluation example. Figure 2 shows the model 
score depending on the size of the training dataset. 

We used the F-measure [15] [16] as a way to 
check the model accuracy. In general, the F mea-
sure is defi ned as: 

𝐹𝐹𝛽𝛽 =
(𝛽𝛽2 + 1)𝑃𝑃𝑃𝑃

𝛽𝛽2𝑃𝑃 + 𝑃𝑃  (0 ≤  𝛽𝛽 < +∞) (1)

where: P is a model precision,
R is a model recall and
β is a parameter that controls the balance 
between precision and recall. 

To evaluate the accuracy of the model predic-
tion we used β = 1, and defi ne our model score as: 

𝐹𝐹1 =
2𝑃𝑃𝑃𝑃
𝑃𝑃 + 𝑃𝑃 (2)

By using the spaCy model with embedded 
vectors we were able to further increase the over-
all score of the model. In the fi nal experiment, the 
model achieved an F1 score of 76.50 % with a pre-
cision of 82.35% and a recall of 71.43%. 

As the main purpose of our research was 
to identify objects in requirements to validate, 
whether they are properly linked with their defi -
nitions, we were more interested in high precision 
as any false positive result may lead to a poten-
tial indication of an error where the error was not 
present. If the term is not recognized by the sys-
tem (false negative) it will not have a signifi cant 
infl uence on the requirement analysis. We con-
ducted a manual analysis of the model output for 
the evaluation data set and found out that some 
of the errors were irrelevant considering the pur-
pose. Table 2 shows examples of errors found in 
model predictions.

More than 20% of the model predictions con-
sidered incorrect based on the evaluation data 
are category 1 errors (incorrect span). Consider-
ing the purpose, such errors should be treated as 
a proper prediction. Additionally, we found three 
cases in which the model recognized an element 
that was not marked by the annotator, but after 

Tabl e 1. Similar terms for some railway-related termsDuring the review, we evaluated the 10 most similar items 
for the selected term. We observed that the fi rst 3 to 5 matches were very similar to the query (with a similarity 
score usually above 0.5), which was not always true for the rest of the items. This behaviour is probably due to 
the limited amount of data on which the model was learned. General-purpose vector representations created from 
publicly available data obtained from the Internet are often learned with several billion words [14].

Word Trained Vector representation en_core_web_lg
Brake Applied, emergency, braking Brakes, wheel, calliper

Pantograph Pantographs, raise, raised Pantographs, catenary, treadle
Eff ort Tractive, braking, eff orts Eff orts, attempt, helped

Brake pipe Brake cylinder, pressure, emergency brake module No vector representation

Figur e 2. Model F1 score as a function of training dataset sizeAs visible on the graph, further extension of the 
training dataset does not improve the model score. Considering that each requirement from the dataset consists 
of many “terms” the overall number of almost 1000 diff erent examples seems to be enough to teach the model. 
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the revision of the requirement, it was found to 
be a valid element of the train. Taking this into 
account, the overall precision of the model pre-
condition was above 87%. 

The last step in our analysis was to create a 
list of all elements detected by the model with 
the number of their occurrences. On its basis, we 
manually selected elements that we considered 
obvious and do not require explanation, e.g. cab-
in, TCMS etc. Then we counted the occurrences 
of non-obvious elements in the requirement and 
compared them with the number of references in 
the text. 

The result shows 3 groups of requirements: 
 • Very good – number of references close to, or 

above the number of found elements
 • Good – number of references between 30–70% 

of the found elements
 • Insufficient – number of references below 

30% of the found elements

In some cases, the score defined above was 
not applicable, due to none or a very limited 
number of train elements found by the model in 
requirement. 

CONCLUSIONS

The research has shown that by using pub-
licly available, production-ready tools for natural 
language processing such as spaCy it is possible 
to create the model recognising train elements 
in software requirements written in natural lan-
guage. The precision of the prediction (above 
87%) was high enough to use such a tool non only 
in research but also in a production environment. 
The process described in the article requires rela-
tively low effort, as most of the steps are done 
automatically (generating word vectors, model 
training) or semi-automatically (annotation with 
the pre-defined list of items). It can be applied 
to many different domains, especially if they use 

their own, specific domain language. The model 
created with such a process can be used not only 
for measuring the quality of requirements but also 
for other tasks (e.g. creating a project glossary). 
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